Giải SGK Toán 12 Bài 3 (Chân trời sáng tạo): Biểu thức toạ độ của các phép toán vectơ

Giải bài tập Toán 12 Bài 3: Biểu thức toạ độ của các phép toán vectơ

Hoạt động khởi động trang 58 Toán 12 Tập 1: Trong không gian Oxyz, có thể thực hiện các phép toán vectơ dựa trên tọa độ của chúng tương tự như đã làm trong mặt phẳng Oxy không?

a=x;y;z,a=x;y;z

a+a=?

Hoạt động khởi động trang 58 Toán 12 Tập 1 Chân trời sáng tạo | Giải Toán 12

Lời giải:

Trong không gian Oxyz, ta có thể thực hiện các phép toán vectơ dựa trên tọa độ của chúng tương tự như đã làm trên mặt phẳng tọa độ.

1. Biểu thức tọa độ của tổng, hiệu hai vectơ và tích của một số với một vectơ

Hoạt động khám phá 1 trang 58 Toán 12 Tập 1: Trong không gian Oxyz, cho hai vectơ a=a1;a2;a3b=b1;b2;b3 với số thực m.

a) Biểu diễn từng vectơ a và b theo ba vectơ i,j,k .

b) Biểu diễn các vectơ a+b,ab,ma theo ba vectơ i,j,k, từ đó suy ra tọa độ của các vectơ a+b,ab,ma .

Lời giải:

a) a=a1i+a2j+a3k ; b=b1i+b2j+b3k .

Hoạt động khám phá 1 trang 58 Toán 12 Tập 1 Chân trời sáng tạo | Giải Toán 12

Suy ra ab=a1b1;a2b2;a3b3 .

ma=ma1i+a2j+a3k=ma1i+ma2j+ma3k

Suy ra ma=ma1;ma2;ma3

Thực hành 1 trang 59 Toán 12 Tập 1: Cho ba vectơ a=2;5;3,b=0;2;1,c=1;7;2.

a) Tìm tọa độ của vectơ d=4a13b+3c .

b) Tìm tọa độ của vectơ e=a4b2c .

c) Chứng minh a cùng phương với vectơ m=6;15;9 .

Lời giải:

a) 4a=8;20;12,13b=0;23;13,3c=3;21;6 .

Khi đó d=4a13b+3c=11;13;553 .

b) a=2;5;3,4b=0;8;4,2c=2;14;4 .

Khi đó e=a4b2c = (0; −27; 3).

c) Có m=6;15;9=32;5;3=3a .

Do đó a cùng phương với vectơ m.

Vận dụng 1 trang 59 Toán 12 Tập 1: Một thiết bị thăm dò đáy biển đang lặn với vận tốc v=10;8;3 (Hình 1). Cho biết vận tốc của dòng hải lưu của vùng biển là w=3,5;1;0 .

a) Tìm tọa độ của vectơ tổng hai vận tốc v và w .

b) Giả sử thiết bị thăm dò lặn với vận tốc u=7;2;0 , hãy nêu nhận xét về vectơ vận tốc của nó so với vectơ vận tốc của dòng hải lưu.

Vận dụng 1 trang 59 Toán 12 Tập 1 Chân trời sáng tạo | Giải Toán 12

Lời giải:

a) v+w=10+3,5;8+1;3+0=13,5;9;3 .

b) Vì u=7;2;0=23,5;1;0=2w .

Do đó hai vectơ này cùng phương, cùng hướng với nhau.

2. Biểu thức tọa độ của tích vô hướng

Hoạt động khám phá 2 trang 59 Toán 12 Tập 1: Cho hai vectơ a=a1;a2;a3 và b=b1;b2;b3.

a) Biểu diễn từng vectơ a và b theo ba vectơ i,j,k .

b) Tính các tích vô hướng i2,j2,k2,i.j,j.k,k.i .

c) Tính tích vô hướng a.b theo tọa độ của hai vectơ a và b .

Lời giải:

a) a=a1i+a2j+a3k và b=b1i+b2j+b3k .

b)

Hoạt động khám phá 2 trang 59 Toán 12 Tập 1 Chân trời sáng tạo | Giải Toán 12

c)

Hoạt động khám phá 2 trang 59 Toán 12 Tập 1 Chân trời sáng tạo | Giải Toán 12

Thực hành 2 trang 60 Toán 12 Tập 1: Cho ba vectơ m=5;4;9n=2;7;0p=6;3;4.

a) Tính m.n,m.p .

b) Tính m,n,cosm,n .

c) Cho q=1;2;0 . Vectơ q có vuông góc với p không?

Lời giải:

a) m.n=5.2+4.7+9.0=38 .

m.p=5.6+4.3+9.4=54

b)

Thực hành 2 trang 60 Toán 12 Tập 1 Chân trời sáng tạo | Giải Toán 12

c) Có p.q=6.1+3.2+4.0=0 . Do đó pq .

Vận dụng 2 trang 60 Toán 12 Tập 1: Một thiết bị thăm dò đáy biển (Hình 2) được đẩy bởi một lực f=5;4;2 (đơn vị: N) giúp thiết bị thực hiện độ dời a=70;20;40(đơn vị: m). Tính công sinh bởi lực f .

Vận dụng 2 trang 60 Toán 12 Tập 1 Chân trời sáng tạo | Giải Toán 12

Lời giải:

Công sinh bởi lực được f tính theo công thức

A=f.a=5.70+4.20+2.40=510 J.

3. Vận dụng

Hoạt động khám phá 3 trang 60 Toán 12 Tập 1: Cho hai điểm AxA;yA;zA,BxB;yB;zB. Từ biểu thức AB=OBOA, tìm tọa độ của vectơ AB  theo tọa độ hai điểm A, B.

Lời giải:

Ta có OA=xA;yA;zA,OBxB;yB;zB .

Do đó AB=OBOA=xBxA;yByA;zBzA .

Thực hành 3 trang 61 Toán 12 Tập 1: Cho ba điểm M(7; −2; 0), N(−9; 0; 4), P(0; −6; 5).

a) Tìm tọa độ của các vectơ MN,NP,MP .

b) Tính các độ dài MN, NP, MP.

Lời giải:

a) MN=97;0+2;40=16;2;4 ;

NP=0+9;60;54=9;6;1;

MP=07;6+2;50=7;4;5.

b) MN=162+22+42=269.

NP=92+62+1=118.

MP=72+42+52=310.

Hoạt động khám phá 4 trang 61 Toán 12 Tập 1: Cho tam giác ABC có A(xA; yA; zA), B(xB; yB; zB), C(xC; yC; zC). Gọi M(xM; yM; zM) là trung điểm của đoạn thẳng AB và G(xG; yG; zG) là trọng tâm của tam giác ABC. Sử dụng các hệ thức vectơ OM=12OA+OB;OG=13OA+OB+OC, tìm tọa độ của các điểm M và G.

Ta có OA=xA;yA;zA;OB=xB;yB;zB;OC=xC;yC;zC .

Có Hoạt động khám phá 4 trang 61 Toán 12 Tập 1 Chân trời sáng tạo | Giải Toán 12

Do đó MxA+xB2;yA+yB2;zA+zB2 .

Hoạt động khám phá 4 trang 61 Toán 12 Tập 1 Chân trời sáng tạo | Giải Toán 12

Do đó GxA+xB+xC3;yA+yB+yC3;zA+zB+zC3 .

Thực hành 4 trang 62 Toán 12 Tập 1: Cho tam giác MNP có M(2; 1; 3), N(1; 2; 3), P(−3;−1; 0). Tìm tọa độ:

a) Các điểm M’, N’, P’ lần lượt là trung điểm của các cạnh NP, MP, MN;

b) Trọng tâm G của tam giác M’N’P’.

Lời giải:

a) Tọa độ trung điểm M’ của cạnh NP là

M132;212;3+02 hay M1;12;32 .

Tọa độ trung điểm N’ của cạnh MP là

N232;112;3+02 hay N12;0;32 .

Tọa độ trung điểm P’ của cạnh MN là

P2+12;1+22;3+32 hay P32;32;3 .

b) Tọa độ trọng tâm G là:

G112+323;12+0+323;32+32+33 hay G0;23;2 .

Vận dụng 3 trang 62 Toán 12 Tập 1: Cho hình chóp S.ABC có SA  (ABC), SA = a và đáy ABC là tam giác đều cạnh a, O là trung điểm của BC. Bằng cách thiết lập hệ tọa độ như Hình 3, hãy tìm tọa độ:

a) Các điểm A, S, B, C.

b) Trung điểm M của SB và trung điểm N của SC.

c) Trọng tâm G của tam giác SBC.

Vận dụng 3 trang 62 Toán 12 Tập 1 Chân trời sáng tạo | Giải Toán 12

Lời giải:

a)

Vận dụng 3 trang 62 Toán 12 Tập 1 Chân trời sáng tạo | Giải Toán 12

Vì ABC là tam giác đều cạnh a, O là trung điểm của BC nên AO là đường cao.

Suy ra AO=a32 và OB = OC = a2 .

Vì OC và i cùng hướng và OC=a2 nên OC=a2i . Suy ra Ca2;0;0 .

Vì OB và i ngược hướng và OB=a2 nên OB=a2i . Suy ra Ba2;0;0 .

Vì OA và j cùng hướng và OA=a32 nên OA=a32j . Suy ra A0;a32;0

Gọi I là hình chiếu của S trên Oz.

Ta có OI = SA.

Vì OI và k cùng hướng và OI = a nên OI=ak .

Theo quy tắc hình bình hành có: OS=OA+OI=a32j+ak .

Do đó S0;a32;a .

b) Tọa độ trung điểm M của SB là

M0a22;a32+02;a+02 hay Ma4;a34;a2 .

Tọa độ trung điểm N của SC là

N0+a22;a32+02;a+02 hay Na4;a34;a2 .

c) Tọa độ trọng tâm G của tam giác SBC là:

G0a2+a23;0+a32+03;0+a+03 hay G0;a36;a3 .

Thực hành 5 trang 63 Toán 12 Tập 1: Cho tam giác MNP có M(0; 1; 2), N(5; 9; 3), P(7; 8; 2).

a) Tìm tọa độ điểm K là chân đường cao kẻ từ M của tam giác MNP.

b) Tìm độ dài cạnh MN và MP.

c) Tính góc M.

Lời giải:

Thực hành 5 trang 63 Toán 12 Tập 1 Chân trời sáng tạo | Giải Toán 12

a) Ta có NP=2;11 .

Vì K là chân đường vuông góc kẻ từ M xuống NP nên K  NP và MK  NP.

Gọi K(x; y; z), ta có KP=7x;8y;2z .

Vì NP và KP cùng phương nên tồn tại t  ℝ sao cho KP=tNP .

Do đó 7x=2t8y=t2z=tx=72ty=8+tz=2+t. Suy ra K(7 – 2t; 8 + t; 2 + t).

Khi đó MK=72t;7+t;t .

Vì MK  NP nên MK.NP=072t.2+7+t.1+t1=0t=76

Vậy K143;556;196 .

b) Ta có MN=5;8;1 ; MP=7;7;0 .

MN=52+82+12=310MP=72+72+02=72 .

c) Ta có cosM^=MN.MPMN.MP=5.7+8.7+1.0310.72=91425=13530M^14°18

Vận dụng 4 trang 64 Toán 12 Tập 1: Trên phần mềm mô phỏng việc điều khiển drone giao hàng trong không gian Oxyz, một đội gồm ba drone giao hàng A, B, C đang có tọa độ là A(1; 1; 1), B(5; 7; 9), C(9; 11; 4). Tính:

a) Các khoảng cách giữa mỗi cặp drone giao hàng.

b) Góc BAC^ .

Vận dụng 4 trang 64 Toán 12 Tập 1 Chân trời sáng tạo | Giải Toán 12

Lời giải:

a) Ta có AB=4;6;8 ; AC=8;10;3 ; BC=4;4;5 .

Khi đó: AB=42+62+82=229;

AC=82+102+32=173;

BC=42+42+52=57.

b) Ta có cosBAC^=AB.ACAB.AC=4.8+6.10+8.3229.173=11925017 BAC^35°2.

Bài tập

Bài 1 trang 64 Toán 12 Tập 1: Tính:

a) a.b với a=5;2;4,b=4;2;2 .

b) c.d với c=2;3;4,d=6;5;3 .

Lời giải:

a) a.b=5.4+2.2+4.2=8 .

b) c.d=2.6+3.5+4.3=15 .

Bài 2 trang 64 Toán 12 Tập 1: Cho hai vectơ a=0;1;3 và b=2;3;1. Tìm tọa độ của vectơ 2b32a.

Lời giải:

Có 32a=0;32;92 ; 2b=4;6;2.

Tọa độ của vectơ 2b32a là 40;632;292 hay 4;92;52 .

Bài 3 trang 64 Toán 12 Tập 1: Cho ba điểm A(2; 1; −1), B(3; 2; 0) và C(2; −1; 3).

a) Chứng minh A, B, C là ba đỉnh của một tam giác. Tính chu vi tam giác ABC.

b) Tìm tọa độ trung điểm của các cạnh của tam giác ABC.

c) Tìm tọa độ trọng tâm G của tam giác ABC.

Lời giải:

a) Ta có AB=1;1;1,AC=0;2;4,BC=1;3;3 .

Vì AB và AC không cùng phương nên A, B, C không thẳng hàng.

Do đó A, B, C là ba đỉnh của một tam giác.

Ta có chu vi tam giác ABC là:

AB + AC + BC

12+12+12+02+22+42+12+32+32

=3+25+19

b) Gọi M, N, P lần lượt là trung điểm của cạnh AB, BC, CA.

Tọa độ điểm M là

M2+32;1+22;1+02 hay M52;32;12 .

Tọa độ điểm N là

N3+22;212;0+32 hay N52;12;32 .

Tọa độ điểm P là

P2+22;112;1+32 hay P2;0;1 .

c) Tọa độ trọng tâm G của tam giác ABC là

G2+3+23;1+213;1+0+33 hay G73;23;23 .

Bài 4 trang 64 Toán 12 Tập 1: Cho điểm M(1; 2; 3). Hãy tìm tọa độ của các điểm:

a) M1, M2, M3 lần lượt là hình chiếu vuông góc của M trên các mặt phẳng (Oxy), (Oyz), (Oxz).

b) Gọi M’, M”, M”‘ lần lượt là các điểm thỏa mãn:

• O là trung điểm của MM’;

• MM” vuông góc với mặt phẳng (Oxy) tại điểm H sao cho H là trung điểm của MM”.

• MM”‘ vuông góc và cắt trục Oy tại điểm K sao cho K là trung điểm của MM”‘.

Lời giải:

a) Ta có M1(1; 2; 0), M2(0; 2; 3), M3(1; 0; 3).

b) +) Vì O là trung điểm của MM’ nên

xM=2xOxMyM=2yOyMzM=2zOzMxM=2.01yM=2.02zM=2.03xM=1yM=2zM=3

Vậy M'(−1; −2; −3).

+) Vì H  (Oxy) nên H(x; y; 0).

Ta có MH=x1;y2;3 .

Vì MH  (Oxy) MHOxMHOy MH.i=0MH.j=0x1=0y2=0x=1y=2

Do đó H(1; 2; 0).

Vì H là trung điểm của MM” nên

xM=2xHxMyM=2yHyMzM=2zHzMxM=2.11yM=2.22zM=2.03xM=1yM=2zM=3

Vậy M”(1; 2; −3).

+) Vì K  Oy nên K(0; y; 0)MK=1;y2;3

Vì MKOy nên HK.j=0 y2=0y=2 . Do đó K(0; 2; 0).

Vì K là trung điểm của MM”‘ nên

xM=2xKxMyM=2yKyMzM=2zKzMxM=2.01yM=2.22zM=2.03xM=1yM=2zM=3

Vậy M”'(−1; 2; −3).

Bài 5 trang 64 Toán 12 Tập 1: Cho ba điểm A(3; 3; 3), B(1; 1; 2) và C(5; 3; 1).

a) Tìm điểm M trên trục Oy cách đều hai điểm B, C.

b) Tìm điểm N trên mặt phẳng (Oxy) cách đều ba điểm A, B, C.

Lời giải:

a) Vì M  Oy nên M(0; y; 0).

Vì M cách đều hai điểm B, C nên MB = MC hay MB2 = MC2

12+1y2+22=52+3y2+12

4y=29y=294

Vậy M0;294;0 .

b) Vì N  (Oxy) nên N(x; y; 0).

Vì N cách đều ba điểm A, B, C nên NA = NB = NC hay NA2 = NB2 = NC2

Bài 5 trang 64 Toán 12 Tập 1 Chân trời sáng tạo | Giải Toán 12

Vậy N2;134;0 .

Bài 6 trang 64 Toán 12 Tập 1: Cho các điểm A(−1; −1; 0), B(0; 3; −1), C(−1; 14; 0), D(−3; 6; 2). Chứng minh rằng ABCD là hình thang.

Ta có AB=1;4;1AC=0;15;0DC=2;8;2.

Vì DC=2;8;2=21;4;1=2AB nên DC và AB cùng phương.

Mặt khác AB và AC không cùng phương nên CD // AB.

Do đó ABCD là hình thang.

Bài 7 trang 64 Toán 12 Tập 1: Cho hình hộp ABCD.A’B’C’D’ có A(1; 0; 1), B(2; 1; 2), D(1; −1; 1), C'(4; 5; −5). Tìm tọa độ các đỉnh còn lại của hình hộp.

Bài 7 trang 64 Toán 12 Tập 1 Chân trời sáng tạo | Giải Toán 12

Do ABCD.A’B’C’D’ là hình hộp nên các mặt là hình bình hành.

Ta có AD=BC  11=xC210=yC111=zC2xC=2yC=0zC=2.

Vậy C(2; 0; 2).

Ta có DC=DC 21=4xD1=5yD21=5zD xD=3yD=4zD=6.

Vậy D'(3; 4; −6).

Ta có AD=AD 11=3xA10=4yA11=6zA xA=3yA=5zA=6.

Vậy A'(3; 5; −6).

Ta có AD=BC33=4xB45=5yB6+6=5zBxB=4yB=6zB=5.

Vậy B'(4; 6; −5).

Bài 8 trang 64 Toán 12 Tập 1: Tính công sinh bởi lực F20;30;10  (đơn vị: N) tạo bởi một drone giao hàng (Hình 7) khi thực hiện một độ dịch chuyển d=150;200;100 (đơn vị: m).

Lời giải:

Bài 8 trang 64 Toán 12 Tập 1 Chân trời sáng tạo | Giải Toán 12

Lời giải:

Công sinh bởi lực F là A=F.d = 20.150 + 30.200 + (-10).100 = 8000 J.

Xem thêm các bài giải bài tập Toán lớp 12 Chân trời sáng tạo hay, chi tiết khác:

Bài 2. Toạ độ của vectơ trong không gian

Bài 3. Biểu thức toạ độ của các phép toán vectơ

Bài tập cuối chương II

Bài 1. Khoảng biến thiên và khoảng tử phân vị của mẫu số liệu ghép nhóm

Bài 2. Phương sai và độ lệch chuẩn của mẫu số liệu ghép nhóm

Bài tập cuối chương III

Lý thuyết Biểu thức toạ độ của các phép toán vectơ

1. Biểu thức tọa độ của tổng, hiệu hai vecto và tích của một số với một vecto

Trong không gian Oxyz, cho hai vecto a=(x;y;z) và b=(x;y;z). Ta có:

  • a+b=(x+x;y+y;z+z)
  • ab=(xx;yy;zz)
  • ka=(kx;ky;kz) với k là một số thực

2. Biểu thức tọa độ của tích vô hướng

Trong không gian Oxyz, tích vô hướng của hai vecto a=(x;y;z) và b=(x;y;z) được xác định bởi công thức ab=xx+yy+zz

3. Vận dụng

a) Xác định tọa độ của vecto khi biết tọa độ điểm đầu và điểm cuối

Trong không gian Oxyz, cho hai điểm A(xA;yA;zA),B(xB;yB;zB). Ta có:

AB=(xBxA;yByA;zBzA)

b) Tọa độ trung điểm đoạn thẳng. Tọa độ trọng tâm tam giác

Trong không gian Oxyz, cho ba điểm không thẳng hàng A(xA;yA;zA),B(xB;yB;zB),C(xC;yC;zC). Khi đó:

  • Tọa độ trung điểm của đoạn thẳng AB là (xA+xB2;yA+yB2;zA+zB2)
  • Tọa độ trọng tâm tam giác ABC là (xA+xB+xC2;yA+yB+yC2;zA+zB+zC2)

Để lại một bình luận

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Lên đầu trang