Giải SGK Toán 12 Bài 1 (Chân trời sáng tạo): Vẽ đồ thị hàm số bằng phần mềm Geogebra

Giải bài tập Toán 12 Bài 1: Vẽ đồ thị hàm số bằng phần mềm Geogebra

Thực hành 1 trang 89 Toán 12 Tập 1: Vẽ đồ thị các hàm số bậc ba sau:

a) y = x3;       b) y = x3 – 3x;

c) y = −x3 + 3x;    d) y = x3 – 3x + 2.

Lời giải:

a) y = x3

– Tạo các thanh trượt biểu thị các tham số a, b, c, d bằng cách nhấp chuột liên tiếp vào thanh công cụ Thực hành 1 trang 89 Toán 12 Tập 1 Chân trời sáng tạo | Giải Toán 12 và vào vị trí màn hình nơi mà ta muốn đặt thanh trượt.

Thực hành 1 trang 89 Toán 12 Tập 1 Chân trời sáng tạo | Giải Toán 12

– Nhập hàm số y = xvào vùng nhập lệnh.

– Ta được đồ thị như hình vẽ

Thực hành 1 trang 89 Toán 12 Tập 1 Chân trời sáng tạo | Giải Toán 12

– Nhận xét:

Hàm số đồng biến trên khoảng (0; +∞) và nghịch biến trên khoảng (−∞; 0).

Hàm số đã cho không có cực trị.

Đồ thị có tâm đối xứng là (0; 0).

b) y = x3 – 3x

– Tạo các thanh trượt biểu thị các tham số a, b, c, d bằng cách nhấp chuột liên tiếp vào thanh công cụ Thực hành 1 trang 89 Toán 12 Tập 1 Chân trời sáng tạo | Giải Toán 12 và vào vị trí màn hình nơi mà ta muốn đặt thanh trượt.

Thực hành 1 trang 89 Toán 12 Tập 1 Chân trời sáng tạo | Giải Toán 12

– Nhập hàm số y = x3 – 3x vào vùng nhập lệnh.

– Ta được đồ thị như hình vẽ

Thực hành 1 trang 89 Toán 12 Tập 1 Chân trời sáng tạo | Giải Toán 12

Nhận xét:

Hàm số đồng biến trên các khoảng (−∞; −1) và (1; +∞).

Hàm số nghịch biến trên khoảng (−1; 1).

Điểm cực đại là (−1; 2), điểm cực tiểu là (1; −2).

Đồ thị hàm số có tâm đối xứng là (0; 0).

c) y = −x3 + 3x

– Tạo các thanh trượt biểu thị các tham số a, b, c, d bằng cách nhấp chuột liên tiếp vào thanh công cụ Thực hành 1 trang 89 Toán 12 Tập 1 Chân trời sáng tạo | Giải Toán 12 và vào vị trí màn hình nơi mà ta muốn đặt thanh trượt.

Thực hành 1 trang 89 Toán 12 Tập 1 Chân trời sáng tạo | Giải Toán 12

– Nhập hàm số y = −x3 + 3x vào vùng nhập lệnh.

– Ta được đồ thị như hình vẽ

Thực hành 1 trang 89 Toán 12 Tập 1 Chân trời sáng tạo | Giải Toán 12

Nhận xét:

Hàm số nghịch biến trên các khoảng (−∞; −1) và (1; +∞).

Hàm số đồng biến trên khoảng (−1; 1).

Điểm cực đại là (1; 2), điểm cực tiểu là (−1; −2).

Đồ thị hàm số có tâm đối xứng là (0; 0).

d) y = x3 – 3x + 2

– Tạo các thanh trượt biểu thị các tham số a, b, c, d bằng cách nhấp chuột liên tiếp vào thanh công cụ Thực hành 1 trang 89 Toán 12 Tập 1 Chân trời sáng tạo | Giải Toán 12 và vào vị trí màn hình nơi mà ta muốn đặt thanh trượt.

Thực hành 1 trang 89 Toán 12 Tập 1 Chân trời sáng tạo | Giải Toán 12

– Nhập hàm số y = x3 – 3x + 2 vào vùng nhập lệnh.

– Ta được đồ thị như hình vẽ

Thực hành 1 trang 89 Toán 12 Tập 1 Chân trời sáng tạo | Giải Toán 12

Nhận xét:

Hàm số đồng biến trên các khoảng (−∞; −1) và (1; +∞).

Hàm số nghịch biến trên khoảng (−1; 1).

Điểm cực đại là (−1; 4), điểm cực tiểu là (1; 0).

Đồ thị hàm số có tâm đối xứng là (0; 2).

Thực hành 2 trang 89 Toán 12 Tập 1: Vẽ đồ thị các hàm số sau:

a) y = x+1x1 ;       b) y = x1x1 .

Lời giải:

a) y = x+1x1

– Tạo các thanh trượt biểu thị các tham số a, b, c, d

Thực hành 2 trang 89 Toán 12 Tập 1 Chân trời sáng tạo | Giải Toán 12

– Nhập hàm số y = x+1x1 vào ô lệnh.

– Nhập phương trình hai đường tiệm cận x = 1; y = 1.

– Ta được đồ thị như hình vẽ

Thực hành 2 trang 89 Toán 12 Tập 1 Chân trời sáng tạo | Giải Toán 12

Nhận xét

Hàm số nghịch biến trên khoảng (−∞; 1) và (1; +∞).

Hàm số không có cực trị.

Đồ thị hàm số nhận x = 1 là tiệm cận đứng và y = 1 là tiệm cận ngang.

Tâm đối xứng của đồ thị hàm số là (1; 1).

b) y = x1x1

– Tạo các thanh trượt biểu thị các tham số a, b, c, d

Thực hành 2 trang 89 Toán 12 Tập 1 Chân trời sáng tạo | Giải Toán 12

– Nhập hàm số y = x1x1 vào ô lệnh.

– Nhập phương trình hai đường tiệm cận x = 1; y = −1.

– Ta được đồ thị như hình vẽ

Thực hành 2 trang 89 Toán 12 Tập 1 Chân trời sáng tạo | Giải Toán 12

Nhận xét

Hàm số đồng biến trên khoảng (−∞; 1) và (1; +∞).

Hàm số không có cực trị.

Đồ thị hàm số nhận x = 1 là tiệm cận đứng và y = −1 là tiệm cận ngang.

Tâm đối xứng của đồ thị hàm số là (1; −1).

Thực hành 3 trang 90 Toán 12 Tập 1: Vẽ đồ thị các hàm số sau:

a) y = x2+x1x1;    b) y = x2+x1x1 ;    c) y = x2+3x+1x+1 .

 

Lời giải:

a) y = x2+x1x1

– Tạo các thanh trượt biểu thị các tham số a, b, c, m, n

Thực hành 3 trang 90 Toán 12 Tập 1 Chân trời sáng tạo | Giải Toán 12

– Nhập hàm số y = x2+x1x1 vào vùng nhập lệnh.

– Nhập hai đường tiệm cận x = 1; y = x + 2.

– Ta vẽ được đồ thị hàm số như hình vẽ sau

Thực hành 3 trang 90 Toán 12 Tập 1 Chân trời sáng tạo | Giải Toán 12

Nhận xét

Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).

Hàm số nghịch biến trên các khoảng (0; 1) và (1; 2).

Đồ thị hàm số nhận x = 1 làm tiệm cận đứng và y = x + 2 làm tiệm cân xiên.

Đồ thị hàm số nhận (1; 3) làm tâm đối xứng.

b) y = x2+x1x1

– Tạo các thanh trượt biểu thị các tham số a, b, c, m, n

Thực hành 3 trang 90 Toán 12 Tập 1 Chân trời sáng tạo | Giải Toán 12

– Nhập hàm số y = x2+x1x1 vào vùng nhập lệnh.

– Nhập hai đường tiệm cận x = 1; y = −x.

– Ta vẽ được đồ thị hàm số như hình vẽ sau

Thực hành 3 trang 90 Toán 12 Tập 1 Chân trời sáng tạo | Giải Toán 12

Nhận xét

Hàm số nghịch biến trên các khoảng (−∞; 0) và (2; +∞).

Hàm số đồng biến trên các khoảng (0; 1) và (1; 2).

Đồ thị hàm số nhận x = 1 làm tiệm cận đứng và y = −x làm tiệm cận xiên.

Đồ thị hàm số nhận (1; −1) làm tâm đối xứng.

c) y=x2+3x+1x+1

– Tạo các thanh trượt biểu thị các tham số a, b, c, m, n

Thực hành 3 trang 90 Toán 12 Tập 1 Chân trời sáng tạo | Giải Toán 12

– Nhập hàm số y=x2+3x+1x+1 vào vùng nhập lệnh.

– Nhập hai đường tiệm cận x = −1; y = x + 2.

– Ta vẽ được đồ thị hàm số như hình vẽ sau

Thực hành 3 trang 90 Toán 12 Tập 1 Chân trời sáng tạo | Giải Toán 12

Nhận xét

Hàm số đồng biến trên các khoảng (−∞; −1) và (−1; +∞).

Đồ thị hàm số nhận x = −1 làm tiệm cận đứng và y = x + 2 làm tiệm cận xiên.

Đồ thị hàm số nhận (−1; 1) làm tâm đối xứng.

Xem thêm các bài giải bài tập Toán lớp 12 Chân trời sáng tạo hay, chi tiết khác:

Bài tập cuối chương III

Bài 1. Vẽ đồ thị hàm số bằng phần mềm Geogebra

Bài 2. Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số bằng máy tính cầm tay

Bài 1. Nguyên hàm

Bài 2. Tích phân

Bài 3. Ứng dụng hình học của tích phân

Để lại một bình luận

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Lên đầu trang